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ABSTRACT
Detecting eye contact is essential for embodied robots to engage in
natural interactions with humans, enhancing the intuitiveness and
comfort of these exchanges. However, eye contact detection often
presents a significant challenge due to a variety of factors, such
as low contrast and various forms of occlusions. Existing methods
incorporate convolutional neural networks (CNNs) or Transform-
ers to learn discriminative representations, but usually ignore the
influence of noisy or less relevant regions in facial images. To ad-
dress this gap, we propose the deep feature selection and fusion
network (FSFNet) for eye contact detection in multi-party conversa-
tions. Our proposed method adaptively selects fine-grained visual
features and reduces the impacts of irrelevant features. Specifically,
we present a local feature selection scheme that leverages the atten-
tion scores to progressively concentrate on the most informative
features. By integrating the carefully selected features into the
multi-head self-attention module, we can maintain the superior
properties of Transformers while simultaneously reducing the over-
all computational demands. We evaluate the proposed method on
the official eye contact detection datasets, which achieves promis-
ing results of 0.8174 and 0.79 on the validation and test sets, re-
spectively. We have made the source code publicly accessible in
https://github.com/ma-hnu/FSFNet.
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1 INTRODUCTION
Eye contact is a fundamental aspect of non-verbal communication
that helps in establishing and maintaining social bonds. It helps par-
ticipants in a multi-party conversation to understand when they are
being addressed or when it might be their turn to speak. Automatic
eye contact detection holds significant importance for various appli-
cations and scenarios, such as human-robot interaction, emotional
intelligence and healthcare. In medical settings, it can be used to
monitor patients for signs of cognitive decline or other conditions
that affect social interaction. For embodied robots or AI systems
designed to interact with humans, the ability to detect eye contact
can make the interactions feel more natural and human-like. Con-
sequently, automatic eye contact detection has received growing
attention from multidisciplinary researchers.

While there are extensive studies [6, 22–24] on human behavior
analysis, limited effort has been made for eye contact detection
in multi-person conversations, especially in the computer vision
domain. Recent advancements in deep learning have significantly
improved the accuracy of eye contact detection systems. Convolu-
tional neural networks (CNNs) are particularly effective due to their
ability to learn complex patterns from large datasets. For instance,
the study by Chong et al. [3] demonstrates a deep neural network
model that achieved accuracy comparable to human experts by
training on millions of annotated eye contact events. However,
CNNs may struggle with detecting eye contact when the subject’s
head pose is extreme or when there is occlusion of the eyes due to
glasses, hats, or other obstructions. Ignoring these issues during
the deep model design phase can invariably result in suboptimal
classification outcomes.
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Figure 1: For the eye contact detection task, we utilize the
OpenFace [1] toolkit to detect and align the facial regions of
each participant. Non-frontal head poses, diverse occlusions,
and different illumination conditions are commonly seen in
the MPIIGroupInteraction dataset [22].

Recent flourishing of Vision Transformers (e.g., ViT [7] and its
variants [17, 18]) has considerably deepened our understanding
about visual feature representation. Consequently, it is an open
question how to leverage Transformers to adaptively capture the
contextual information within facial features for eye contact de-
tection. For example, Ma et al. [16] propose a unified network for
both eye contact detect and next speaker detection. The visual
feature token sequence is modelled by the vanilla Transformer en-
coders, and the relationships among feature tokens are captured
with the multi-head self-attention (MHSA) mechanism. The eye
contact detection task faces the challenges of occlusions and poses
variations. The deep models may mistakenly focus on some occlu-
sion or background areas and generate wrong results. Meanwhile,
the linear increase of the tokens incurs a quadratic computation
cost for calculating token relationships with self-attention.

In this paper, we present our solution for the eye contact detec-
tion task in the MultiMediate challenge [19–21]. The challenge
task is formulated to predict four categories (i.e., left, right, frontal
and no eye contact), while the previous methods [29, 35] output
whether the subject is looking at a target or not. As shown in Fig-
ure 1, we first detect and align the facial regions by OpenFace to
remove redundant background information. These facial images in
unconstrained environments frequently encounter unforeseen chal-
lenges, including occlusions caused by hair, eyeglasses, and hands.
To improve the performance of eye contact detection, we argue
that it is necessary and important for deep models to focus on fore-
ground areas and discriminative regions, regardless of occlusions
and less informative facial parts. In this work, we propose to iden-
tify the attentive feature tokens by the attention scores during each
feed-forward process. Specifically, the attentiveness (importance)
of the classification [CLS] token with respect to each feature token
is calculated between MHSA and FFN (i.e., feed-forward network)
modules. We select the top-k attentive tokens and discard the other
tokens by ranking the attentiveness scores in descending order.
The selected tokens are sent into the subsequent FFN and MHSA
modules for aggregating global visual information and making the
final classification. For the eye contact detection task, our proposed
FSFNet achieves the result of 0.8174 on the validation set and the
performance of 0.79 on the test set.

2 RELATEDWORK
2.1 Eye contact detection and gaze estimation
Eye contact detection and gaze estimation are related but distinct
concepts within the field of computer vision and human-computer
interaction. Both of two tasks are integral to advancing our under-
standing of human interaction and have significant implications
for technology that interfaces with human users. Eye contact de-
tection typically involves binary classification (eye contact present
or not), while gaze estimation is a regression problem that predicts
a continuous gaze direction.

Early works in eye contact detection relied on heuristics and
simple image processing techniques to identify eye contact. Ye et al.
[34] utilize wearable eye-tracking glasses to determine the gaze of
the parent and his child, and detect eye contact by the adult’s point
of gaze and the child’s gaze direction with pre-defined rules. Mean-
while, the wearable devices are both expensive and burdensome to
the subject. Previous appearance-based methods (e.g., [15, 36]) op-
erate under the assumption that participants are facing the camera
directly, which does not readily extend to scenarios involving multi-
person conversations. With the advent of deep learning, there has
been a shift towards using CNNs for eye contact detection, leverag-
ing large datasets of labeled eye contact instances. Otsuka et al. [25]
and Fu et al. [9] both use CNNs to extract discriminative features
and improve the detection performance.

Traditional gaze estimation systems (e.g.,[27, 28]) use special-
ized hardware like infrared cameras and require user calibration for
accurate measurements. In contrast, appearance-based gaze esti-
mation methods (e.g.,[33, 36]) use standard RGB or RGBD cameras
and rely on the visual appearance of the eyes and face to infer gaze
direction. Notable works in gaze estimation include the MPIIGaze
[37] and EYEDIAP [10] datasets, which have been used to train
CNNs for gaze direction prediction in the wild. In summary, while
eye contact detection and gaze estimation share some underlying
techniques and challenges, they differ in their goals and applica-
tions. Eye contact detection focuses on identifying direct gaze at
a camera or another person, whereas gaze estimation aims to de-
termine the direction of gaze within a broader visual scene. Both
fields have seen significant advancements with the incorporation
of deep learning and computer vision techniques.

2.2 Transformers in computer vision
Transformers have become a pivotal architecture in the realm of
computer vision, offering a versatile framework that can be adapted
to a myriad of tasks. Initially introduced to the field of natural
language processing (NLP), the transformative success of models
like BERT [5] demonstrate the power of the self-attention mech-
anism. The transition of these models into computer vision has
been marked by significant milestones. For instance, ViT [7] in-
troduces a paradigm shift by applying the Transformer directly to
image patches, sidestepping the traditional reliance on convolu-
tional layers for feature extraction. This pre-trained model shows
competitive performance on image classification tasks and sets a
new benchmark for subsequent research.

The adaptability of Transformers has led to their successful de-
ployment in various high-level vision tasks such as object detection,
semantic segmentation, and video understanding. For example, the
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Figure 2: Overview of our method for eye contact detection. The CNN backbone first extracts feature maps for the aligned
facial image. The feature maps are flattened into a sequence of feature tokens. The attentiveness scores are leveraged to
adaptively select more relevant tokens and drop irrelevant tokens. The kept tokens are sent into the subsequent layers to fuse
and exchange information through the [CLS] token. After the FSF blocks, the channel attention (CA) module is applied to
enhance the discriminative feature learning.

DETR [2] redefines the object detection task by formulating it as
a set prediction problem, thereby removing the need for complex
hand-crafted components like anchor boxes and non-maximum sup-
pression. This end-to-end paradigm not only simplifies the pipeline
but also enhances the interpretability of the model. Similarly, Swin
Transformer [14] introduces a hierarchical vision Transformer us-
ing shifted windows, which significantly boost the performance of
the model on various visual recognition tasks. Swin Transformer
demonstrates the effectiveness of incorporating Transformer archi-
tecture in handling spatial hierarchies in images.

Moreover, the field has seen the development of efficient Trans-
former models to address the computational intensity of these
architectures. For instance, Wang et al. [32] propose a self-attention
mechanismwith linear complexity, making it more scalable for large
sequences. The exploration of Transformers in computer vision
is still in its ascendancy, with continuous efforts directed towards
enhancing their efficiency, interpretability, and generalization ca-
pabilities. While the Transformer architecture has demonstrated
remarkable success in a multitude of vision tasks, the application
of Transformers to eye contact detection has not been extensively
covered in the literature.

3 METHODOLOGY
3.1 Overview
As discussed above, our primary motivation is to select informa-
tive feature tokens and discard features associated with occlusions
or background noise during each feed-forward process, thereby
reducing computational cost without increasing the number of
learnable parameters. We present the overall framework, depicted
in Figure 2, based on the hybrid CNN-Transformer architecture.
Given a pre-aligned facial image, we first extract features maps
by a CNN backbone, and then flatten the maps into a sequence of
feature tokens for the subsequent FSF blocks. Our proposed FSFNet
introduces the importance scores for each token, and those tokens
with higher scores are kept. The selected top-k feature tokens and

the [CLS] token are jointly sent into the following FSF blocks. As
the network deepens, the most informative tokens are gradually
selected, while the inattentive tokens are identified and discarded.
In this way, our proposed FSFNet not only gradually decreases the
number of tokens, but also facilitates the self-attention module in
focusing on eye contact-related tokens. After the FSF blocks, the
final [CLS] token is through the squeeze-and-excitation module to
make predictions (i.e., left, frontal, right and no eye contact).

3.2 Input Embedding Generation
For the stem CNN with 𝐿 blocks, the mapping function of the
backbone can be represented as F𝐿 = 𝑓1 ◦ 𝑓2 · · · ◦ 𝑓𝐿 , where 𝑓
denotes the mapping function of each block and 𝑓𝑖 ◦ 𝑓𝑖+1 is the
function composition: 𝑓𝑖+1 after 𝑓𝑖 . Given a pre-aligned facial image
𝐼 , the intermediate feature map of the 𝑗-th block can be obtained by

𝑋 𝑗 = F𝑗 (𝐼 ; 𝑓𝜃1 , 𝑓𝜃2 , · · · , 𝑓𝜃 𝑗 ), 𝑗 ∈ {1, 2, · · · , 𝐿}, (1)

where 𝑓𝜃 denotes the learnable parameter for the mapping function
𝑓 . The initial three stages of ResNet50[4], pre-trained on the MS-
Celeb-1M face recognition dataset [11], are utilized as the backbone
to extract visual feature maps. Therefore, the feature maps of the
facial image 𝐼 are generally formulated as :

𝑋3 = F3 (𝐼 ; 𝑓𝜃1 , 𝑓𝜃2 , 𝑓𝜃3 ). (2)

Herewe assume the size of the output featuremaps𝑋3 isR𝐻×𝑊 ×𝐶 ,
and then 𝑋3 is flattened into a feature sequence 𝑋𝑠 ∈ R(𝐻×𝑊 )×𝐶 .
An additional classification token [CLS] is prepended to each fea-
ture sequence for aggregating abstract global feature representa-
tions and final classification. We train the whole FSF blocks from
scratch, and the [CLS] token is expected to contain the information
about the sequence at the early stage. Therefore, we initialize the
[CLS] token with the average of token embeddings 𝑋𝑠 instead of
a normal distribution. Afterwards, all of these tokens are added
by a learnable vector (i.e., positional encodings) and sent into the
sequentially-stacked FSF blocks.
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3.3 Feature Selection and Fusion
Observing the redundancies of the aligned facial images in the spa-
tial domain, we aim to select a few informative tokens and discard
the less relevant ones for further training or evaluation, which could
prevent the model from focusing on occlusion or other noisy areas.
To this end, we introduce a dynamic token selection mechanism
to identify different types of tokens, so that only the tokens with
higher scores will be kept and forwarded into subsequent layers.

Each FSF block consists of a MHSA layer and a FFN layer. In the
first forward process, the normalized feature tokens are linearly
projected and packed into three matrices in MHSA, denoted as
queries (𝑄 ∈ R(𝑛+1)×𝑑 ), keys (𝐾 ∈ R(𝑛+1)×𝑑 ), and values (𝑉 ∈
R(𝑛+1)×𝑑 ). 𝑛 = 𝐻 ×𝑊 is the sequence length of the input tokens,
and 𝑑 is the embedding dimension of these tokens. Therefore, the
self-attention is generally conducted as:

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄,𝐾,𝑉 ) = 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑄𝐾
𝑇

√
𝑑

)𝑉 . (3)

The coefficients in 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑄𝐾
𝑇

√
𝑑
) determine how much informa-

tion of 𝑉 should be fused into the self-attention output through Eq.
3.

In the FSF block, the interactions between the [CLS] token and
other tokens are calculated as:

𝑆𝑐𝑙𝑠 = 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 (
𝑞𝑐𝑙𝑠𝐾

𝑇

√
𝑑

), (4)

where 𝑞𝑐𝑙𝑠 denotes the query vector of the [CLS] token, and 𝑆𝑐𝑙𝑠
represents the relationships between 𝑞𝑐𝑙𝑠 and keys 𝐾 . The higher
the 𝑆𝑐𝑙𝑠 value is, the more relevant between the 𝑞𝑐𝑙𝑠 and the key 𝑘 .
In other words, the [CLS] token pays more attention(i.e., having a
higher attention score) to these tokens that contribute more to the
eye contact detection.

Therefore, we can take the attentiveness scores 𝑆𝑐𝑙𝑠 of the [CLS]
token as the criterion to identify the most important tokens. Specif-
ically, the attention value 𝑆𝑖

𝑐𝑙𝑠
indicates the importance of the 𝑖-th

token. There are multiple heads performing the self attention par-
allelly. We average the scores 𝑆 (ℎ)

𝑐𝑙𝑠
, ℎ ∈ {1, 2, . . . , 𝑁𝐻 } of 𝑁𝐻 heads

by
∑𝑁𝐻

ℎ=1 (𝑆
(ℎ)
𝑐𝑙𝑠

)/𝑁𝐻 . As shown in Figure 2, we rank the scores in
descending order and keep the tokens corresponding to the top-k
scores, which we call the attentive tokens. As there are𝑀 stacked
FSF blocks in the encoder, we utilize a token keep rate 𝑟 for all𝑀
blocks to adjust the token number:

𝑁𝑖 = 𝑟 ∗ 𝑁𝑖−1, 𝑖 ∈ {1, 2, . . . , 𝑀}, (5)

where 𝑁0 = 𝐻 ×𝑊 + 1 denotes the sequence length of the input to-
kens. The token number gradually decreases as the depth increases.
It is noted that the [CLS] token is always reserved, and only the
feature tokens are selected or discarded. After removing the less
relative tokens, the rest tokens are sent to the subsequent layers
(i.e., layer normalization and a feed-forward network). And in the
next forward operation, the [CLS] token aggregates and fuses the
selected tokens via MHSA.

3.4 Prediction and Optimization
After the last FSF block, the [CLS] token is used to generate the
final eye contact detection result through the channel attention

module. We build the CA module on top of the FSF blocks, where
two fully connected layers and corresponding activation functions
are used on the [CLS] token, as shown in Figure 2. This process can
be formulated as:

𝑥𝑜𝑢𝑡𝑝𝑢𝑡 = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑 (𝐹𝐶2 (𝑅𝑒𝐿𝑈 (𝐹𝐶1 (𝑥𝑐𝑙𝑠 )))) ∗ 𝑥𝑐𝑙𝑠 . (6)

The CA module is to optimize the learning of whole network
by capturing more global relationships among these local feature
tokens. Different from the self-attention module in the FSF blocks,
the CA module is applied to recalibrate the feature responses ex-
plicitly among feature channels. The network is optimized by the
standard cross entropy loss after projecting the [CLS] token from
feature space to label space. During the inference phase, the token
keep rate 𝑟 remains consistent with that used during the training
process.

4 EXPERIMENTS
4.1 Dataset and Evaluation Metrics
We evaluate our proposed method on the official MPIIGroupInter-
action dataset [22], which consists of 22 group interactions and 78
German-speaking participants. Specifically, the dataset contains
4504 training samples, 1672 validation samples and 1848 testing
samples for eye contact detection. As the eye contact detection task
can be formulated as single-label classification, the overall accuracy
is used to evaluate the eye contact detection performance.

4.2 Implementation Details
Data Preprocessing: We use the OpenFace toolkit [1] to detect
and align facial images. Due to the limitations of the toolkit, certain
facial images fail to be detected. As a result, there are 4486 sam-
ples for training, 1665 samples for validation and 1835 samples for
testing. We resize all facial images to 112×112 pixels and apply the
data argumentation techniques (e.g., random erasing) to prevent
overfitting.

Experimental Settings: We use the PyTorch framework [26]
to implement our proposed method1. The Adam optimizer [12]
and the Sharpness-Aware Minimization algorithm [8] are used to
optimize the network. We train the model for 300 epochs on one
NVIDIA GTX 4090 GPU card with an initial learning rate of 4e-6. It
is noted that the parameters in FSF blocks are trained from scratch.
In addition, the learning rate is decayed by the gamma of 0.98 every
epoch, and the batch size is set to 128. The backbone outputs the
features maps with the size of 14 × 14 × 512, namely 𝐻 =𝑊 = 14
and 𝑛 = 196. The number of heads 𝑁𝐻 in MHSA is empirically
assigned to 8, and the embedding dimension 𝑑 is 512. We further
investigate the number of FSF blocks𝑀 in the ablation study.

4.3 Comparison with State-of-the-Art Methods
We compare our proposed FSFNet with several state-of-the art
methods on the test set in Tab. 1. The organizers provide a strong
baseline [21] by training RBF-SVMs on head pose and eye gaze
direction feature vectors. By re-implementing the official baseline
method [20] and tuning hyperparameters, the organizers improve
the performance from 0.52 to 0.576 on the test set. Fu et al. [9] use

1https://github.com/ma-hnu/FSFNet
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Table 1: Performance comparison with SOTA methods on
the test set of MPIIGroupInteraction.

Method Year Accuracy

Baseline [21] 2021 0.52
Motion [9] 2021 0.56
Baseline [20] 2022 0.576
TA-CNN [16] 2022 0.7261
MSCFN [30] 2023 0.65
DA [13] 2023 0.777

FSFNet 2024 0.79

Table 2: Evaluation of different token keep numbers (𝑟 ) on
the validation set, and corresponding GFLOPs compared
with the baseline.

𝑟 Accuracy GFLOPs

1.0 0.8135 100%
0.9 0.8162 66%
0.8 0.8148 45%
0.7 0.8156 33%
0.6 0.8174 24%
0.5 0.8150 19%
0.4 0.8132 15%
0.3 0.8103 13%

motion histories to represent the participants’ behavioral features
and train a CNN to extract appearance features, which achieves the
result of 0.56. Different from previous methods, TA-CNN [16] is
designed to detect eye contact in an end-to-end manner. TA-CNN
utilizes the detected facial images to directly extract discriminative
features by a hybrid CNN-Transformer architecture. As a result, TA-
CNN significantly improves the eye contact detection performance
to 0.7261. Li et al. [13] further investigate the effect of different data
argumentation techniques for eye contact detection. They achieve
the performance of 0.777 by fine-tuning a pre-trained Swin Trans-
former with the cropped facial images. MSCFN [30] utilizes the
conformer blocks to generate multi-scale features and obtains the
result of 0.65. Although these previous methods achieve promising
results, they commonly fail to overcome the difficulties under un-
constrained conditions (e.g., occlusions and complex backgrounds).
With the help of our proposed FSF block to progressively discard
irrelevant features, our method outperforms these state-of-the-art
methods with an accuracy of 0.79 on the test set.

4.4 Ablation Study
Impact of the Token Keep number 𝑟 in FSF Blocks: The token
keep number 𝑟 is a hyperparameter to control how many feature
tokens should be kept. To explore the impact of the parameter 𝑟 , we
fix the block number𝑀 = 8 and conduct experiments with different
values 𝑟 from 1.0 to 0.3. We also calculate the computational costs
(i.e., GFLOPs) of the FSF blocks by the fvcore toolkit 2 and report

2https://github.com/facebookresearch/fvcore

Table 3: Evaluation of different block numbers (𝑀) on the
validation set.

Scale 𝑟 Accuracy

small 0.6 0.8078
medium 0.6 0.8168
large 0.6 0.8174
small 0.7 0.8072

medium 0.7 0.8140
large 0.7 0.8156

Table 4: Evaluation of different modules on the validation
set and test set. The best result on the test set is obtained
when the token keep ratio 𝑟 = 0.6.

Method Accuracy (val) Accuracy (test)

ResNet501 0.7345 -
ResNet502 0.7785 -

FSFNet w/o CA 0.7994 0.76
FSFNet (𝑟 = 0.6) 0.8174 0.79
FSFNet EMA 0.8203 -

them in Table 2. The CNN backbone extracts feature maps in a
5.493 GFLOPs cost, and the baseline Transformer encoder has 0.99
GFLOPs. When 𝑟 = 1.0, it represents the baseline model without
dropping any redundant tokens. The detailed results are shown
in Table 2, and our proposed FSFNet framework achieves good
accuracy/GFLOPs trade-offs. As shown in Table 2, when 𝑟 = 0.6,
it boosts the performance from 0.8135 to 0.8174, but with only
24% GFLOPs in FSF blocks compared with the baseline model. The
smaller 𝑟 is, the fewer feature tokens are kept for eye contact detec-
tion, which forces the model to focus on more informative features
in the spatial domain. However, we find that too less information
may make it harder to generate correct predictions, so the results
decrease when 𝑟 is too small (e.g., 0.3, 0.4).

Impact of the Block Number𝑀 in FSF Blocks:We construct
large/medium/small-scale networks (M=8, 6, 4) to capture the rela-
tionships among feature tokens. The comparison results are shown
in Table 3. For each scale and 𝑟 value, the accuracy our the network
is presented. When 𝑟 = 0.6, the accuracy for small-scale networks
is 0.8078, for medium-scale networks is 0.8168, and for large-scale
networks is 0.8174. We find that with the increase of𝑀 , the feature
representation ability greatly enhances, and the performance sig-
nificantly improves. Similar experimental results can be seen from
these large/medium/small-scale networks when 𝑟 = 0.7.

Effectiveness of the Proposed Modules: To evaluate the ef-
fect of the proposed modules, we design the ablation study on the
validation set to better understand the impact of the proposed FSF
block and CA module. The CNN backbone we used is ResNet50,
and the backbone inherits the pre-trained weights on ImageNet
and MS-Celeb-1M, denoted as ResNet501 and ResNet502, respec-
tively. As illustrated in Table 4, the pre-trained weights are critical
for CNN backbone, which boosts the performance from 0.7345 to
0.7785 on the validation set. This indicates that the CNN pre-trained
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(a) Confusion matrix of the baseline method on the validation
set.

(b) Confusion matrix of our FSFNet on the validation set.

Figure 3: The confusion matrices of our method on the val-
idation set. The diagonal values of each confusion matrix
corresponds the accuracy of specific eye contact type. The
darker the cell, the higher its accuracy.

on facial recognition datasets can extract more useful features for
eye contact detection.

Compared with the baseline method ResNet502, both the CA
module and the FSF block increase the performance. The CA mod-
ule brings a performance gain of 0.018 and 0.03 on the validation
set and test set, respectively. We also introduce the exponential
moving average (EMA) technique to maintain moving averages
of the trained parameters. The decay rate for EMA is set to 0.999.
As shown in Table 4, our FSFNet with EMA that use averaged pa-
rameters produces significantly better results than the final trained
values.

Visualization Analysis: As shown in Figure 3, we illustrate
the confusion matrices of the baseline ResNet501 and our FSFNet
on the validation set. We can see from the confusion matrices that
our FSFNet achieves promising results on these four different eye
contact types. The visualization results in Fig. 4 also illustrates that
our proposed method successfully drives the learned features to be-
come closer within each class. Compared with the baseline method,
our FSFNet achieves the clearer boundary between different classes
and proves tighter intra-class feature representations.

(a) The feature distribution learned by the baseline method.

(b) The feature distribution learned by our FSFNet.

Figure 4: Visualization of the learned feature distribution by
t-SNE[31] on the validation set. Note that we adopt the same
color settings for all sub-figures.

5 CONCLUSION
In this paper, we present the FSFNet, a novel deep learning frame-
work, for eye contact detection within multi-party conversations.
Our approach integrates an adaptive feature selection mechanism
within the Transformer architecture, ensuring focusing on relevant
facial features. Specifically, we leverage the attention scores to dy-
namically select the most salient feature, which not only refines
the model’s feature representation ability but also significantly cur-
tails computational costs. The design of our FSF blocks and the
channel attention module achieves promising eye contact detection
performance even under challenging real-world conditions. The
experimental results on the MPIIGroupInteraction dataset demon-
strate the effectiveness of our FSFNet, achieving the accuracy of
0.79 on the test set. Visualization analysis and the ablation studies
provide insightful observations regarding the impact of token keep
number and the block number. Our work contributes to the field by
advancing eye contact detection technology, which holds profound
implications for human-robot interaction and other applications.
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